以下是摘抄网小编精心整理的公式法解二元一次方程教案大约有6篇左右,仅供参考,欢迎大家阅读。
第一篇:公式法解二元一次方程教案
一。教学目标
(一)教学知识点
1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求
1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。教学重点
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。教学难点
1、消元的思想。
2、化未知为已知的化归思想。
四。教学方法
启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。教具准备
投影片两张:
第一张:例题(记作7。2A);
第二张:问题串(记作7。2B)。
六。教学过程
Ⅰ。提出疑问,引入新课
[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?
[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。我们知道二元一次方程的解有无数个。难道我们每个方程组的解都去这样试?
[生]太麻烦啦。
[生]不可能。(www.zhaichao.com)
[师]这就需要我们学习二元一次方程组的解法。
Ⅱ。讲授新课
[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?
[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:
5x+3(8-x)=
解得x=
将x=5代入8-x=8-5=
答:成人去了5个,儿童去了3个。
[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个。列一元一次方程设成人去了x个,儿童去了(8-x)个。y应该等于(8-x)。而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8-x。
[生]我还发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8-x代替就转化成了一元一次方程。
[师]太好了。我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可。如何转化呢?
[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的。所以将中的①变形,得y=8-x③我们把y=8-x代入方程②,即将②中的y用8-x代替,这样就有5x+3(8-x)=34。二元化成一元。
第二篇:公式法解二元一次方程教案
教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页
教学目标
(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。
(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。
(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键
教学重点:用代入消元法解二元一次方程组
教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
教具准备教师准备:ppt多媒体课件投影仪
教学方法本节课采用“问题引入——探究解法——归纳反思”的教学方法,坚持启发式教学。
教学过程
(一)创设情境,导入新课篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
(二)合作交流,探究新知第一步,初步了解代入法1、在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演①设胜的场数是x,负的场数是y
x+y=
2x+y=
②设胜的场数是x,则负的场数为22-x
2x+(22-x)=
2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
3、学生归纳,教师作补充上面的解法,第一步是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
第二步,用代入法解方程组把下列方程写成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0学生活动:尝试自主完成,教师纠正思考:能否用含y的式子来表示x呢?
例1用代入法解方程组x-y=3①3x-8y=14②
思路点拨:先观察这个方程组中哪一项系数较小,发现①中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入②消元。
解:由①变形得X=y+3③
把③代入②,得3(y+3)-8y=
解这个方程,得y=-
把y=-1代入③,得X=
所以这个方程组的解是X=2y=-
如何检验得到的结果是否正确?学生活动:口答检验。
第三步,在实际生活中应用代入法解方程组
例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?思路点拨:本题是实际应用问题,可采用二元一次方程组为工具求解,这就需要构建模型,寻找两个等量关系,从题意可知:大瓶数:小瓶数=2:5;大瓶所装消毒液+小瓶所装消毒液=总生产量(解题过程略)教师活动:启发引导学生构建二元一次方程组的模型。学生活动:尝试设出:这些消毒液应该分装x个大瓶和y个小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=
第四步,小组讨论,得出步骤学生活动:根据例1、例2的解题过程,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。学生归纳,教师补充,总结出代入法解二元一次方程组的步骤:①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的。);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
(三)分组比赛,巩固新知为了激发学生的兴趣,巩固所学的知识,我把全班分成4个小组,把书本P98页练习设计成必答题、抢答题和风险题几个集知识性、趣味性于一体的独立版块,练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。
(四)归纳总结,知识回顾1、通过这节课的学习活动,你有什么收获?2、你认为在运用代入法解二元一次方程组时,应注意什么问题?
(五)布置作业1、作业:P103页第1、2、4题2、思考:提出在日常生活中可以利用二元一次方程组来解决的实际问题。设计说明代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,用于解决新问题。基于这点认识,本课按照“身边的数学问题引入—寻求一元一次方程的解法—探索二元一次方程组的代入消元法—典型例题—归纳代入法的一般步骤”的思路进行设计。在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。重视知识的发生过程。将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的。
第三篇:公式法解二元一次方程教案
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三。教学过程
(一)创设情景,引入课题
1、本班共有40人,请问能确定男*各几人吗?为什么?
(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2、男生比*多了2人。设男生x人,*y人。方程如何表示?x,y的值是多少?
3、本班男生比*多2人且男*共40人。设该班男生x人,*y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1、二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=
y+z=5,x=y+10,
2y+1=5,4x-y2=
学生作出判断并要说明理由。
2、二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0。55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2、你还有什么问题或想法需要和大家交流?
3、作业本。
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
第四篇:公式法解二元一次方程教案
一、教学目标
1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;
2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
过程与方法目标:
经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;
情感与态度目标
1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
二、重点、难点
重点:二元一次方程的概念及二元一次方程的解的概念。
难点
1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段
1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
四、教学过程
创设情境导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
师生互动探索新知
1、发现新知
引导学生观察所列的方程:这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、巩固新知
判断下列各式是不是二元一次方程(1)(2)(3)(4)
五、总结
比较一元一次方程和二元一次方程的相同点和不同点
相同点:方程两边都是整式,含有未知数的项的次数都是一次。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
第五篇:公式法解二元一次方程教案
知识目标
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
能力目标
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
情感目标
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
教学重点
二元一次方程组的含义
教学难点
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
教学过程
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次
练习
下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=
二、议一议、
师:上面的方程中x-y=2的x含义相同吗?
第六篇:公式法解二元一次方程教案
一、教材分析
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标
1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点
1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程
(1)复习引入
在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解
让学生尝试解答
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,
让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
五、课堂小结
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?